3.7.89 \(\int \frac {1}{\sqrt {d+e x} (a+c x^2)^{3/2}} \, dx\) [689]

3.7.89.1 Optimal result
3.7.89.2 Mathematica [C] (verified)
3.7.89.3 Rubi [B] (verified)
3.7.89.4 Maple [B] (verified)
3.7.89.5 Fricas [C] (verification not implemented)
3.7.89.6 Sympy [F]
3.7.89.7 Maxima [F]
3.7.89.8 Giac [F]
3.7.89.9 Mupad [F(-1)]

3.7.89.1 Optimal result

Integrand size = 21, antiderivative size = 331 \[ \int \frac {1}{\sqrt {d+e x} \left (a+c x^2\right )^{3/2}} \, dx=\frac {(a e+c d x) \sqrt {d+e x}}{a \left (c d^2+a e^2\right ) \sqrt {a+c x^2}}-\frac {\sqrt {c} d \sqrt {d+e x} \sqrt {1+\frac {c x^2}{a}} E\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right )|-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{\sqrt {-a} \left (c d^2+a e^2\right ) \sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}} \sqrt {a+c x^2}}+\frac {\sqrt {\frac {\sqrt {c} (d+e x)}{\sqrt {c} d+\sqrt {-a} e}} \sqrt {1+\frac {c x^2}{a}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {1-\frac {\sqrt {c} x}{\sqrt {-a}}}}{\sqrt {2}}\right ),-\frac {2 a e}{\sqrt {-a} \sqrt {c} d-a e}\right )}{\sqrt {-a} \sqrt {c} \sqrt {d+e x} \sqrt {a+c x^2}} \]

output
(c*d*x+a*e)*(e*x+d)^(1/2)/a/(a*e^2+c*d^2)/(c*x^2+a)^(1/2)-d*EllipticE(1/2* 
(1-x*c^(1/2)/(-a)^(1/2))^(1/2)*2^(1/2),(-2*a*e/(-a*e+d*(-a)^(1/2)*c^(1/2)) 
)^(1/2))*c^(1/2)*(e*x+d)^(1/2)*(1+c*x^2/a)^(1/2)/(a*e^2+c*d^2)/(-a)^(1/2)/ 
(c*x^2+a)^(1/2)/((e*x+d)*c^(1/2)/(e*(-a)^(1/2)+d*c^(1/2)))^(1/2)+EllipticF 
(1/2*(1-x*c^(1/2)/(-a)^(1/2))^(1/2)*2^(1/2),(-2*a*e/(-a*e+d*(-a)^(1/2)*c^( 
1/2)))^(1/2))*(1+c*x^2/a)^(1/2)*((e*x+d)*c^(1/2)/(e*(-a)^(1/2)+d*c^(1/2))) 
^(1/2)/(-a)^(1/2)/c^(1/2)/(e*x+d)^(1/2)/(c*x^2+a)^(1/2)
 
3.7.89.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 11.24 (sec) , antiderivative size = 430, normalized size of antiderivative = 1.30 \[ \int \frac {1}{\sqrt {d+e x} \left (a+c x^2\right )^{3/2}} \, dx=\frac {e \left (\sqrt {c} d-i \sqrt {a} e\right ) \sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}} x+i \sqrt {c} d \sqrt {\frac {e \left (\frac {i \sqrt {a}}{\sqrt {c}}+x\right )}{d+e x}} \sqrt {-\frac {\frac {i \sqrt {a} e}{\sqrt {c}}-e x}{d+e x}} (d+e x)^{3/2} E\left (i \text {arcsinh}\left (\frac {\sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}}}{\sqrt {d+e x}}\right )|\frac {\sqrt {c} d-i \sqrt {a} e}{\sqrt {c} d+i \sqrt {a} e}\right )+\sqrt {a} e \sqrt {\frac {e \left (\frac {i \sqrt {a}}{\sqrt {c}}+x\right )}{d+e x}} \sqrt {-\frac {\frac {i \sqrt {a} e}{\sqrt {c}}-e x}{d+e x}} (d+e x)^{3/2} \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}}}{\sqrt {d+e x}}\right ),\frac {\sqrt {c} d-i \sqrt {a} e}{\sqrt {c} d+i \sqrt {a} e}\right )}{a e \left (\sqrt {c} d-i \sqrt {a} e\right ) \sqrt {-d-\frac {i \sqrt {a} e}{\sqrt {c}}} \sqrt {d+e x} \sqrt {a+c x^2}} \]

input
Integrate[1/(Sqrt[d + e*x]*(a + c*x^2)^(3/2)),x]
 
output
(e*(Sqrt[c]*d - I*Sqrt[a]*e)*Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]*x + I*Sqrt[c 
]*d*Sqrt[(e*((I*Sqrt[a])/Sqrt[c] + x))/(d + e*x)]*Sqrt[-(((I*Sqrt[a]*e)/Sq 
rt[c] - e*x)/(d + e*x))]*(d + e*x)^(3/2)*EllipticE[I*ArcSinh[Sqrt[-d - (I* 
Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I*Sqrt[a]*e)/(Sqrt[c]*d + 
 I*Sqrt[a]*e)] + Sqrt[a]*e*Sqrt[(e*((I*Sqrt[a])/Sqrt[c] + x))/(d + e*x)]*S 
qrt[-(((I*Sqrt[a]*e)/Sqrt[c] - e*x)/(d + e*x))]*(d + e*x)^(3/2)*EllipticF[ 
I*ArcSinh[Sqrt[-d - (I*Sqrt[a]*e)/Sqrt[c]]/Sqrt[d + e*x]], (Sqrt[c]*d - I* 
Sqrt[a]*e)/(Sqrt[c]*d + I*Sqrt[a]*e)])/(a*e*(Sqrt[c]*d - I*Sqrt[a]*e)*Sqrt 
[-d - (I*Sqrt[a]*e)/Sqrt[c]]*Sqrt[d + e*x]*Sqrt[a + c*x^2])
 
3.7.89.3 Rubi [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(671\) vs. \(2(331)=662\).

Time = 0.71 (sec) , antiderivative size = 671, normalized size of antiderivative = 2.03, number of steps used = 8, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {496, 27, 599, 25, 1511, 1416, 1509}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\left (a+c x^2\right )^{3/2} \sqrt {d+e x}} \, dx\)

\(\Big \downarrow \) 496

\(\displaystyle \frac {\sqrt {d+e x} (a e+c d x)}{a \sqrt {a+c x^2} \left (a e^2+c d^2\right )}-\frac {\int -\frac {e (a e-c d x)}{2 \sqrt {d+e x} \sqrt {c x^2+a}}dx}{a \left (a e^2+c d^2\right )}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {e \int \frac {a e-c d x}{\sqrt {d+e x} \sqrt {c x^2+a}}dx}{2 a \left (a e^2+c d^2\right )}+\frac {\sqrt {d+e x} (a e+c d x)}{a \sqrt {a+c x^2} \left (a e^2+c d^2\right )}\)

\(\Big \downarrow \) 599

\(\displaystyle \frac {\sqrt {d+e x} (a e+c d x)}{a \sqrt {a+c x^2} \left (a e^2+c d^2\right )}-\frac {\int -\frac {c d^2-c (d+e x) d+a e^2}{\sqrt {\frac {c d^2}{e^2}-\frac {2 c (d+e x) d}{e^2}+\frac {c (d+e x)^2}{e^2}+a}}d\sqrt {d+e x}}{a e \left (a e^2+c d^2\right )}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {\int \frac {c d^2-c (d+e x) d+a e^2}{\sqrt {\frac {c d^2}{e^2}-\frac {2 c (d+e x) d}{e^2}+\frac {c (d+e x)^2}{e^2}+a}}d\sqrt {d+e x}}{a e \left (a e^2+c d^2\right )}+\frac {\sqrt {d+e x} (a e+c d x)}{a \sqrt {a+c x^2} \left (a e^2+c d^2\right )}\)

\(\Big \downarrow \) 1511

\(\displaystyle \frac {\sqrt {d+e x} (a e+c d x)}{a \sqrt {a+c x^2} \left (a e^2+c d^2\right )}-\frac {\sqrt {a e^2+c d^2} \left (\sqrt {c} d-\sqrt {a e^2+c d^2}\right ) \int \frac {1}{\sqrt {\frac {c d^2}{e^2}-\frac {2 c (d+e x) d}{e^2}+\frac {c (d+e x)^2}{e^2}+a}}d\sqrt {d+e x}-\sqrt {c} d \sqrt {a e^2+c d^2} \int \frac {1-\frac {\sqrt {c} (d+e x)}{\sqrt {c d^2+a e^2}}}{\sqrt {\frac {c d^2}{e^2}-\frac {2 c (d+e x) d}{e^2}+\frac {c (d+e x)^2}{e^2}+a}}d\sqrt {d+e x}}{a e \left (a e^2+c d^2\right )}\)

\(\Big \downarrow \) 1416

\(\displaystyle \frac {\sqrt {d+e x} (a e+c d x)}{a \sqrt {a+c x^2} \left (a e^2+c d^2\right )}-\frac {\frac {\left (a e^2+c d^2\right )^{3/4} \left (\sqrt {c} d-\sqrt {a e^2+c d^2}\right ) \left (\frac {\sqrt {c} (d+e x)}{\sqrt {a e^2+c d^2}}+1\right ) \sqrt {\frac {a+\frac {c d^2}{e^2}-\frac {2 c d (d+e x)}{e^2}+\frac {c (d+e x)^2}{e^2}}{\left (a+\frac {c d^2}{e^2}\right ) \left (\frac {\sqrt {c} (d+e x)}{\sqrt {a e^2+c d^2}}+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {d+e x}}{\sqrt [4]{c d^2+a e^2}}\right ),\frac {1}{2} \left (\frac {\sqrt {c} d}{\sqrt {c d^2+a e^2}}+1\right )\right )}{2 \sqrt [4]{c} \sqrt {a+\frac {c d^2}{e^2}-\frac {2 c d (d+e x)}{e^2}+\frac {c (d+e x)^2}{e^2}}}-\sqrt {c} d \sqrt {a e^2+c d^2} \int \frac {1-\frac {\sqrt {c} (d+e x)}{\sqrt {c d^2+a e^2}}}{\sqrt {\frac {c d^2}{e^2}-\frac {2 c (d+e x) d}{e^2}+\frac {c (d+e x)^2}{e^2}+a}}d\sqrt {d+e x}}{a e \left (a e^2+c d^2\right )}\)

\(\Big \downarrow \) 1509

\(\displaystyle \frac {\sqrt {d+e x} (a e+c d x)}{a \sqrt {a+c x^2} \left (a e^2+c d^2\right )}-\frac {\frac {\left (a e^2+c d^2\right )^{3/4} \left (\sqrt {c} d-\sqrt {a e^2+c d^2}\right ) \left (\frac {\sqrt {c} (d+e x)}{\sqrt {a e^2+c d^2}}+1\right ) \sqrt {\frac {a+\frac {c d^2}{e^2}-\frac {2 c d (d+e x)}{e^2}+\frac {c (d+e x)^2}{e^2}}{\left (a+\frac {c d^2}{e^2}\right ) \left (\frac {\sqrt {c} (d+e x)}{\sqrt {a e^2+c d^2}}+1\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {d+e x}}{\sqrt [4]{c d^2+a e^2}}\right ),\frac {1}{2} \left (\frac {\sqrt {c} d}{\sqrt {c d^2+a e^2}}+1\right )\right )}{2 \sqrt [4]{c} \sqrt {a+\frac {c d^2}{e^2}-\frac {2 c d (d+e x)}{e^2}+\frac {c (d+e x)^2}{e^2}}}-\sqrt {c} d \sqrt {a e^2+c d^2} \left (\frac {\sqrt [4]{a e^2+c d^2} \left (\frac {\sqrt {c} (d+e x)}{\sqrt {a e^2+c d^2}}+1\right ) \sqrt {\frac {a+\frac {c d^2}{e^2}-\frac {2 c d (d+e x)}{e^2}+\frac {c (d+e x)^2}{e^2}}{\left (a+\frac {c d^2}{e^2}\right ) \left (\frac {\sqrt {c} (d+e x)}{\sqrt {a e^2+c d^2}}+1\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} \sqrt {d+e x}}{\sqrt [4]{c d^2+a e^2}}\right )|\frac {1}{2} \left (\frac {\sqrt {c} d}{\sqrt {c d^2+a e^2}}+1\right )\right )}{\sqrt [4]{c} \sqrt {a+\frac {c d^2}{e^2}-\frac {2 c d (d+e x)}{e^2}+\frac {c (d+e x)^2}{e^2}}}-\frac {\sqrt {d+e x} \sqrt {a+\frac {c d^2}{e^2}-\frac {2 c d (d+e x)}{e^2}+\frac {c (d+e x)^2}{e^2}}}{\left (a+\frac {c d^2}{e^2}\right ) \left (\frac {\sqrt {c} (d+e x)}{\sqrt {a e^2+c d^2}}+1\right )}\right )}{a e \left (a e^2+c d^2\right )}\)

input
Int[1/(Sqrt[d + e*x]*(a + c*x^2)^(3/2)),x]
 
output
((a*e + c*d*x)*Sqrt[d + e*x])/(a*(c*d^2 + a*e^2)*Sqrt[a + c*x^2]) - (-(Sqr 
t[c]*d*Sqrt[c*d^2 + a*e^2]*(-((Sqrt[d + e*x]*Sqrt[a + (c*d^2)/e^2 - (2*c*d 
*(d + e*x))/e^2 + (c*(d + e*x)^2)/e^2])/((a + (c*d^2)/e^2)*(1 + (Sqrt[c]*( 
d + e*x))/Sqrt[c*d^2 + a*e^2]))) + ((c*d^2 + a*e^2)^(1/4)*(1 + (Sqrt[c]*(d 
 + e*x))/Sqrt[c*d^2 + a*e^2])*Sqrt[(a + (c*d^2)/e^2 - (2*c*d*(d + e*x))/e^ 
2 + (c*(d + e*x)^2)/e^2)/((a + (c*d^2)/e^2)*(1 + (Sqrt[c]*(d + e*x))/Sqrt[ 
c*d^2 + a*e^2])^2)]*EllipticE[2*ArcTan[(c^(1/4)*Sqrt[d + e*x])/(c*d^2 + a* 
e^2)^(1/4)], (1 + (Sqrt[c]*d)/Sqrt[c*d^2 + a*e^2])/2])/(c^(1/4)*Sqrt[a + ( 
c*d^2)/e^2 - (2*c*d*(d + e*x))/e^2 + (c*(d + e*x)^2)/e^2]))) + ((c*d^2 + a 
*e^2)^(3/4)*(Sqrt[c]*d - Sqrt[c*d^2 + a*e^2])*(1 + (Sqrt[c]*(d + e*x))/Sqr 
t[c*d^2 + a*e^2])*Sqrt[(a + (c*d^2)/e^2 - (2*c*d*(d + e*x))/e^2 + (c*(d + 
e*x)^2)/e^2)/((a + (c*d^2)/e^2)*(1 + (Sqrt[c]*(d + e*x))/Sqrt[c*d^2 + a*e^ 
2])^2)]*EllipticF[2*ArcTan[(c^(1/4)*Sqrt[d + e*x])/(c*d^2 + a*e^2)^(1/4)], 
 (1 + (Sqrt[c]*d)/Sqrt[c*d^2 + a*e^2])/2])/(2*c^(1/4)*Sqrt[a + (c*d^2)/e^2 
 - (2*c*d*(d + e*x))/e^2 + (c*(d + e*x)^2)/e^2]))/(a*e*(c*d^2 + a*e^2))
 

3.7.89.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 496
Int[((c_) + (d_.)*(x_))^(n_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> Simp[ 
(-(a*d + b*c*x))*(c + d*x)^(n + 1)*((a + b*x^2)^(p + 1)/(2*a*(p + 1)*(b*c^2 
 + a*d^2))), x] + Simp[1/(2*a*(p + 1)*(b*c^2 + a*d^2))   Int[(c + d*x)^n*(a 
 + b*x^2)^(p + 1)*Simp[b*c^2*(2*p + 3) + a*d^2*(n + 2*p + 3) + b*c*d*(n + 2 
*p + 4)*x, x], x], x] /; FreeQ[{a, b, c, d, n}, x] && LtQ[p, -1] && IntQuad 
raticQ[a, 0, b, c, d, n, p, x]
 

rule 599
Int[((A_.) + (B_.)*(x_))/(Sqrt[(c_) + (d_.)*(x_)]*Sqrt[(a_) + (b_.)*(x_)^2] 
), x_Symbol] :> Simp[-2/d^2   Subst[Int[(B*c - A*d - B*x^2)/Sqrt[(b*c^2 + a 
*d^2)/d^2 - 2*b*c*(x^2/d^2) + b*(x^4/d^2)], x], x, Sqrt[c + d*x]], x] /; Fr 
eeQ[{a, b, c, d, A, B}, x] && PosQ[b/a]
 

rule 1416
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c 
/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2*x^2)^2)]/ 
(2*q*Sqrt[a + b*x^2 + c*x^4]))*EllipticF[2*ArcTan[q*x], 1/2 - b*(q^2/(4*c)) 
], x]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && PosQ[c/a]
 

rule 1509
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a + b*x^2 + c*x^4]/(a*(1 + q 
^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + b*x^2 + c*x^4)/(a*(1 + q^2* 
x^2)^2)]/(q*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[2*ArcTan[q*x], 1/2 - b*(q^2 
/(4*c))], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 
- 4*a*c, 0] && PosQ[c/a]
 

rule 1511
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[c/a, 2]}, Simp[(e + d*q)/q   Int[1/Sqrt[a + b*x^2 + c*x^ 
4], x], x] - Simp[e/q   Int[(1 - q*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x] /; 
NeQ[e + d*q, 0]] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && Pos 
Q[c/a]
 
3.7.89.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(686\) vs. \(2(271)=542\).

Time = 2.37 (sec) , antiderivative size = 687, normalized size of antiderivative = 2.08

method result size
elliptic \(\frac {\sqrt {\left (e x +d \right ) \left (c \,x^{2}+a \right )}\, \left (-\frac {2 \left (c e x +c d \right ) \left (-\frac {d x}{2 a \left (e^{2} a +c \,d^{2}\right )}-\frac {e}{2 \left (e^{2} a +c \,d^{2}\right ) c}\right )}{\sqrt {\left (x^{2}+\frac {a}{c}\right ) \left (c e x +c d \right )}}+\frac {2 \left (\frac {1}{a}-\frac {e^{2}}{2 \left (e^{2} a +c \,d^{2}\right )}-\frac {c \,d^{2}}{a \left (e^{2} a +c \,d^{2}\right )}\right ) \left (\frac {d}{e}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}}\, F\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\right )}{\sqrt {c e \,x^{3}+c d \,x^{2}+a e x +a d}}-\frac {e c d \left (\frac {d}{e}-\frac {\sqrt {-a c}}{c}\right ) \sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x -\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\, \sqrt {\frac {x +\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}}\, \left (\left (-\frac {d}{e}-\frac {\sqrt {-a c}}{c}\right ) E\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\right )+\frac {\sqrt {-a c}\, F\left (\sqrt {\frac {x +\frac {d}{e}}{\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}, \sqrt {\frac {-\frac {d}{e}+\frac {\sqrt {-a c}}{c}}{-\frac {d}{e}-\frac {\sqrt {-a c}}{c}}}\right )}{c}\right )}{a \left (e^{2} a +c \,d^{2}\right ) \sqrt {c e \,x^{3}+c d \,x^{2}+a e x +a d}}\right )}{\sqrt {e x +d}\, \sqrt {c \,x^{2}+a}}\) \(687\)
default \(\frac {\left (-\sqrt {-a c}\, \sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e +c d}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e -c d}}\, F\left (\sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}, \sqrt {-\frac {\sqrt {-a c}\, e -c d}{\sqrt {-a c}\, e +c d}}\right ) a \,e^{3}-\sqrt {-a c}\, \sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e +c d}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e -c d}}\, F\left (\sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}, \sqrt {-\frac {\sqrt {-a c}\, e -c d}{\sqrt {-a c}\, e +c d}}\right ) c \,d^{2} e +a c \sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e +c d}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e -c d}}\, E\left (\sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}, \sqrt {-\frac {\sqrt {-a c}\, e -c d}{\sqrt {-a c}\, e +c d}}\right ) d \,e^{2}+\sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}\, \sqrt {\frac {\left (-c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e +c d}}\, \sqrt {\frac {\left (c x +\sqrt {-a c}\right ) e}{\sqrt {-a c}\, e -c d}}\, E\left (\sqrt {-\frac {c \left (e x +d \right )}{\sqrt {-a c}\, e -c d}}, \sqrt {-\frac {\sqrt {-a c}\, e -c d}{\sqrt {-a c}\, e +c d}}\right ) c^{2} d^{3}+c^{2} d \,e^{2} x^{2}+a c \,e^{3} x +c^{2} d^{2} e x +d \,e^{2} a c \right ) \sqrt {e x +d}\, \sqrt {c \,x^{2}+a}}{c e a \left (e^{2} a +c \,d^{2}\right ) \left (c e \,x^{3}+c d \,x^{2}+a e x +a d \right )}\) \(696\)

input
int(1/(c*x^2+a)^(3/2)/(e*x+d)^(1/2),x,method=_RETURNVERBOSE)
 
output
((e*x+d)*(c*x^2+a))^(1/2)/(e*x+d)^(1/2)/(c*x^2+a)^(1/2)*(-2*(c*e*x+c*d)*(- 
1/2*d/a/(a*e^2+c*d^2)*x-1/2*e/(a*e^2+c*d^2)/c)/((x^2+1/c*a)*(c*e*x+c*d))^( 
1/2)+2*(1/a-1/2*e^2/(a*e^2+c*d^2)-1/a/(a*e^2+c*d^2)*c*d^2)*(d/e-(-a*c)^(1/ 
2)/c)*((x+d/e)/(d/e-(-a*c)^(1/2)/c))^(1/2)*((x-(-a*c)^(1/2)/c)/(-d/e-(-a*c 
)^(1/2)/c))^(1/2)*((x+(-a*c)^(1/2)/c)/(-d/e+(-a*c)^(1/2)/c))^(1/2)/(c*e*x^ 
3+c*d*x^2+a*e*x+a*d)^(1/2)*EllipticF(((x+d/e)/(d/e-(-a*c)^(1/2)/c))^(1/2), 
((-d/e+(-a*c)^(1/2)/c)/(-d/e-(-a*c)^(1/2)/c))^(1/2))-e*c*d/a/(a*e^2+c*d^2) 
*(d/e-(-a*c)^(1/2)/c)*((x+d/e)/(d/e-(-a*c)^(1/2)/c))^(1/2)*((x-(-a*c)^(1/2 
)/c)/(-d/e-(-a*c)^(1/2)/c))^(1/2)*((x+(-a*c)^(1/2)/c)/(-d/e+(-a*c)^(1/2)/c 
))^(1/2)/(c*e*x^3+c*d*x^2+a*e*x+a*d)^(1/2)*((-d/e-(-a*c)^(1/2)/c)*Elliptic 
E(((x+d/e)/(d/e-(-a*c)^(1/2)/c))^(1/2),((-d/e+(-a*c)^(1/2)/c)/(-d/e-(-a*c) 
^(1/2)/c))^(1/2))+(-a*c)^(1/2)/c*EllipticF(((x+d/e)/(d/e-(-a*c)^(1/2)/c))^ 
(1/2),((-d/e+(-a*c)^(1/2)/c)/(-d/e-(-a*c)^(1/2)/c))^(1/2))))
 
3.7.89.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.09 (sec) , antiderivative size = 291, normalized size of antiderivative = 0.88 \[ \int \frac {1}{\sqrt {d+e x} \left (a+c x^2\right )^{3/2}} \, dx=\frac {{\left (a c d^{2} + 3 \, a^{2} e^{2} + {\left (c^{2} d^{2} + 3 \, a c e^{2}\right )} x^{2}\right )} \sqrt {c e} {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c d^{2} - 3 \, a e^{2}\right )}}{3 \, c e^{2}}, -\frac {8 \, {\left (c d^{3} + 9 \, a d e^{2}\right )}}{27 \, c e^{3}}, \frac {3 \, e x + d}{3 \, e}\right ) + 3 \, {\left (c^{2} d e x^{2} + a c d e\right )} \sqrt {c e} {\rm weierstrassZeta}\left (\frac {4 \, {\left (c d^{2} - 3 \, a e^{2}\right )}}{3 \, c e^{2}}, -\frac {8 \, {\left (c d^{3} + 9 \, a d e^{2}\right )}}{27 \, c e^{3}}, {\rm weierstrassPInverse}\left (\frac {4 \, {\left (c d^{2} - 3 \, a e^{2}\right )}}{3 \, c e^{2}}, -\frac {8 \, {\left (c d^{3} + 9 \, a d e^{2}\right )}}{27 \, c e^{3}}, \frac {3 \, e x + d}{3 \, e}\right )\right ) + 3 \, {\left (c^{2} d e x + a c e^{2}\right )} \sqrt {c x^{2} + a} \sqrt {e x + d}}{3 \, {\left (a^{2} c^{2} d^{2} e + a^{3} c e^{3} + {\left (a c^{3} d^{2} e + a^{2} c^{2} e^{3}\right )} x^{2}\right )}} \]

input
integrate(1/(c*x^2+a)^(3/2)/(e*x+d)^(1/2),x, algorithm="fricas")
 
output
1/3*((a*c*d^2 + 3*a^2*e^2 + (c^2*d^2 + 3*a*c*e^2)*x^2)*sqrt(c*e)*weierstra 
ssPInverse(4/3*(c*d^2 - 3*a*e^2)/(c*e^2), -8/27*(c*d^3 + 9*a*d*e^2)/(c*e^3 
), 1/3*(3*e*x + d)/e) + 3*(c^2*d*e*x^2 + a*c*d*e)*sqrt(c*e)*weierstrassZet 
a(4/3*(c*d^2 - 3*a*e^2)/(c*e^2), -8/27*(c*d^3 + 9*a*d*e^2)/(c*e^3), weiers 
trassPInverse(4/3*(c*d^2 - 3*a*e^2)/(c*e^2), -8/27*(c*d^3 + 9*a*d*e^2)/(c* 
e^3), 1/3*(3*e*x + d)/e)) + 3*(c^2*d*e*x + a*c*e^2)*sqrt(c*x^2 + a)*sqrt(e 
*x + d))/(a^2*c^2*d^2*e + a^3*c*e^3 + (a*c^3*d^2*e + a^2*c^2*e^3)*x^2)
 
3.7.89.6 Sympy [F]

\[ \int \frac {1}{\sqrt {d+e x} \left (a+c x^2\right )^{3/2}} \, dx=\int \frac {1}{\left (a + c x^{2}\right )^{\frac {3}{2}} \sqrt {d + e x}}\, dx \]

input
integrate(1/(c*x**2+a)**(3/2)/(e*x+d)**(1/2),x)
 
output
Integral(1/((a + c*x**2)**(3/2)*sqrt(d + e*x)), x)
 
3.7.89.7 Maxima [F]

\[ \int \frac {1}{\sqrt {d+e x} \left (a+c x^2\right )^{3/2}} \, dx=\int { \frac {1}{{\left (c x^{2} + a\right )}^{\frac {3}{2}} \sqrt {e x + d}} \,d x } \]

input
integrate(1/(c*x^2+a)^(3/2)/(e*x+d)^(1/2),x, algorithm="maxima")
 
output
integrate(1/((c*x^2 + a)^(3/2)*sqrt(e*x + d)), x)
 
3.7.89.8 Giac [F]

\[ \int \frac {1}{\sqrt {d+e x} \left (a+c x^2\right )^{3/2}} \, dx=\int { \frac {1}{{\left (c x^{2} + a\right )}^{\frac {3}{2}} \sqrt {e x + d}} \,d x } \]

input
integrate(1/(c*x^2+a)^(3/2)/(e*x+d)^(1/2),x, algorithm="giac")
 
output
integrate(1/((c*x^2 + a)^(3/2)*sqrt(e*x + d)), x)
 
3.7.89.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\sqrt {d+e x} \left (a+c x^2\right )^{3/2}} \, dx=\int \frac {1}{{\left (c\,x^2+a\right )}^{3/2}\,\sqrt {d+e\,x}} \,d x \]

input
int(1/((a + c*x^2)^(3/2)*(d + e*x)^(1/2)),x)
 
output
int(1/((a + c*x^2)^(3/2)*(d + e*x)^(1/2)), x)